ADN
La molécula de ADN (ácido desoxirribonucleico) es la portadora de toda la información genética que pasa de una generación a la siguiente, y contiene todas las instrucciones necesarias para la formación de un organismo nuevo así como para el control de todas las actividades de las células durante el tiempo de vida del organismo. Está presente en todos los seres vivos, desde virus y bacterias hasta plantas y animales.
En los organismos superiores el ADN es único e invariable, a lo largo de toda la vida, para cada individuo de cada especie. Esta característica es lo que se conoce como "huella genética", y es la base de los estudios de identificación de individuos. Salvo unas pocas excepciones (glóbulos rojos en mamíferos, por ejemplo), todas las células de un organismo vivo tienen ADN. Gracias a ello es posible extraerlo a partir de cualquier muestra biológica.
Estructura ADN
Las cuatro bases nitrogenadas del ADN se encuentran distribuidas a lo largo de la "columna vertebral" que conforman los azúcares con el ácido fosfórico en un orden particular, (la secuencia del ADN). La adenina (A) se empareja con la timina (T) mientras que la citosina (C) lo hace con la guanina.
La estructura primaria del ADN está determinada por esta secuencia de bases ordenadas sobre la "columna" formada por los nucleósidos: azucar + fosfato. Este orden es en realidad lo que se transmite de generación en generación (herencia).
Estructura secundaria
Es el modelo postulado por Watson y Crick: la doble hélice, las dos hebras de ADN se matienen unidas por los puentes hidrógenos entre las bases. Los pares de bases están formados siempre por una purina y una pirimidina, de forma que ambas cadenas están siempre equidistantes, a unos 11 Å una de la otra. Los pares de bases adoptan una disposición helicoidal en el núcleo central de la molécula, ya que presentan una rotación de 36º con respecto al par adyacente, de forma que hay 10 pares de bases por cada vuelta de la hélice. La A se empareja siempre con la T mediante dos puentes de hidrógeno, mientras que la C se empareja siempre con la G por medio de 3 puentes de hidrógeno. En cada extremo de una doble hélice lineal de ADN, el extremo 3'-OH de una de las hebras es adyacente al extremo 5'-P (fosfato) de la otra. En otras palabras, las dos hebras son antiparalelas, es decir, tienen una orientación diferente. Por convención, la secuencia de bases de una hebra sencilla se escribe con el extremo 5'-P a la izquierda.
Estructura terciaria
Es la forma en que se organiza esta doble hélice. En Procariotas (así como en las mitocondrias y cloroplastos eucariotas) el ADN se presenta como una doble cadena (de cerca de 1 mm de longitud), circular y cerrada, que toma el nombre de cromosoma bacteriano. Esta "gigantesca" molécula circular tiene un peso de 3 X 10 9d (daltons). No posee las histonas del cromosoma eucariota, pero se ha comprobado la existencia de proteínas y poliaminas de bajo peso molecular y de iones magnesio que cumplirían su función. El cromosoma bacteriano se encuentra altamente condensado y ordenado ("supercoiled" o superenrrollado).
En virus, el ADN puede presentarse como una doble hélice cerrada, como una doble hélice abierta o simplemente como una única hebra lineal.
En los Eucariotas el ADN se encuentra localizado principalmente en el núcleo, apareciendo el superenrrollamiento (trenzamiento de la trenza) y la asociación con proteínas histónicas y no histónicas. El ADN se enrolla (dos vueltas) alrededor de un octeto de proteínas histónicas formando un nucleosoma, estos quedan separados por una secuencia de ADN de hasta 80 pares de bases, formando un "collar de perlas" o más correctamente denominado fibra de cromatina, siendo la estructura propia del núcleo interfásico, que no ha entrado en división. Este collar de nucleosomas vuelve a enrollarse y cada 6 nucleosomas constituyen un "paso de rosca" por medio de histoma H1 formando estructuras del tipo solenoide.
En el ciclo mitótico de las células eucariotas la cromatina se enrrolla formando cromosomas, que son complejas asociaciones de ADN y proteínas .
Tipos de moléculas de DNA
Los ácidos nucleicos pueden adoptar diferentes estructuras según factores tales como humedad, identidad de los iones presentes, así como la secuencia de bases.
DNA-B
Estudios por difracción de rayos-X han mostrado que la presencia de iones alcalinos como el Na+ y una humedad relativa del 92 % promueve que las moléculas de DNA adopten la llamada conformación B, conformación considerada como nativa ya el patrón de rayos-X es muy parecido al que fue encontrado en cabezas de espermatozoides de esperma de salmón .
La molécula de ADN (ácido desoxirribonucleico) es la portadora de toda la información genética que pasa de una generación a la siguiente, y contiene todas las instrucciones necesarias para la formación de un organismo nuevo así como para el control de todas las actividades de las células durante el tiempo de vida del organismo. Está presente en todos los seres vivos, desde virus y bacterias hasta plantas y animales.
En los organismos superiores el ADN es único e invariable, a lo largo de toda la vida, para cada individuo de cada especie. Esta característica es lo que se conoce como "huella genética", y es la base de los estudios de identificación de individuos. Salvo unas pocas excepciones (glóbulos rojos en mamíferos, por ejemplo), todas las células de un organismo vivo tienen ADN. Gracias a ello es posible extraerlo a partir de cualquier muestra biológica.
Estructura ADN
Las cuatro bases nitrogenadas del ADN se encuentran distribuidas a lo largo de la "columna vertebral" que conforman los azúcares con el ácido fosfórico en un orden particular, (la secuencia del ADN). La adenina (A) se empareja con la timina (T) mientras que la citosina (C) lo hace con la guanina.
La estructura primaria del ADN está determinada por esta secuencia de bases ordenadas sobre la "columna" formada por los nucleósidos: azucar + fosfato. Este orden es en realidad lo que se transmite de generación en generación (herencia).
Estructura secundaria
Es el modelo postulado por Watson y Crick: la doble hélice, las dos hebras de ADN se matienen unidas por los puentes hidrógenos entre las bases. Los pares de bases están formados siempre por una purina y una pirimidina, de forma que ambas cadenas están siempre equidistantes, a unos 11 Å una de la otra. Los pares de bases adoptan una disposición helicoidal en el núcleo central de la molécula, ya que presentan una rotación de 36º con respecto al par adyacente, de forma que hay 10 pares de bases por cada vuelta de la hélice. La A se empareja siempre con la T mediante dos puentes de hidrógeno, mientras que la C se empareja siempre con la G por medio de 3 puentes de hidrógeno. En cada extremo de una doble hélice lineal de ADN, el extremo 3'-OH de una de las hebras es adyacente al extremo 5'-P (fosfato) de la otra. En otras palabras, las dos hebras son antiparalelas, es decir, tienen una orientación diferente. Por convención, la secuencia de bases de una hebra sencilla se escribe con el extremo 5'-P a la izquierda.
Estructura terciaria
Es la forma en que se organiza esta doble hélice. En Procariotas (así como en las mitocondrias y cloroplastos eucariotas) el ADN se presenta como una doble cadena (de cerca de 1 mm de longitud), circular y cerrada, que toma el nombre de cromosoma bacteriano. Esta "gigantesca" molécula circular tiene un peso de 3 X 10 9d (daltons). No posee las histonas del cromosoma eucariota, pero se ha comprobado la existencia de proteínas y poliaminas de bajo peso molecular y de iones magnesio que cumplirían su función. El cromosoma bacteriano se encuentra altamente condensado y ordenado ("supercoiled" o superenrrollado).
En virus, el ADN puede presentarse como una doble hélice cerrada, como una doble hélice abierta o simplemente como una única hebra lineal.
En los Eucariotas el ADN se encuentra localizado principalmente en el núcleo, apareciendo el superenrrollamiento (trenzamiento de la trenza) y la asociación con proteínas histónicas y no histónicas. El ADN se enrolla (dos vueltas) alrededor de un octeto de proteínas histónicas formando un nucleosoma, estos quedan separados por una secuencia de ADN de hasta 80 pares de bases, formando un "collar de perlas" o más correctamente denominado fibra de cromatina, siendo la estructura propia del núcleo interfásico, que no ha entrado en división. Este collar de nucleosomas vuelve a enrollarse y cada 6 nucleosomas constituyen un "paso de rosca" por medio de histoma H1 formando estructuras del tipo solenoide.
En el ciclo mitótico de las células eucariotas la cromatina se enrrolla formando cromosomas, que son complejas asociaciones de ADN y proteínas .
Tipos de moléculas de DNA
Los ácidos nucleicos pueden adoptar diferentes estructuras según factores tales como humedad, identidad de los iones presentes, así como la secuencia de bases.
DNA-B
Estudios por difracción de rayos-X han mostrado que la presencia de iones alcalinos como el Na+ y una humedad relativa del 92 % promueve que las moléculas de DNA adopten la llamada conformación B, conformación considerada como nativa ya el patrón de rayos-X es muy parecido al que fue encontrado en cabezas de espermatozoides de esperma de salmón .
Características:
· Está constituido por dos hebras polinucleotídicas que se enrollan alrededor de un eje común formando una hélice de aproximadamente 20 A de diámetro que gira hacia la derecha. Las cadenas se extienden en direcciones opuestas y se encuentran enrolladas de manera que no pueden separarse sin que sea desenrollada la hélice (enrollamiento plectonémico). Las bases se encuentran hacia el interior de la hélice mientras que las cadenas de azúcar-fosfato se encuentran hacia el exterior con el fin de minimizar las repulsiones entre grupos fosfatos cargados.
· Los planos de las bases son perpendiculares al eje de la hélice. Cada base está unida a la de la hebra opuesta por enlaces de hidrógeno (apareamiento de bases complementarias)
· La hélice del DNA-B ideal posee un 10 pares de bases (bp) por vuelta, o sea, un giro helicoidal de 36 grados por bp. Las bases aromáticas tienen espesores de van der Waals de 3.4 A y estan parcialmente apiladas una sobre otra (apilamiento de bases), por lo que la hélice presenta un paso de rosca (elevación por vuelta) de 34 A.
La estructura de Watson-Crick solo admite dos conformaciones posibles para el apareamiento de bases, la adenina (A) con la timina (T) y viceversa y la guanina (G) con la citosina (C) y viceversa, estos son conocidos como pares de bases Watson-Crick. Estos pares de bases son intercambiables entre si dentro de la helice sin cambiar los atomos del carbono 1 del esqueleto azúcar-fosfato. Igual la hélice permanece inalterada cuando se intercambian los integrantes de un par de bases Watson-Crick. Por el contrario, cualquier otra combinación de bases distorsionaría la doble hélice ya que la formación de un par de bases distinto a los de Watson-Crick requeriría un reordenamiento importante de la cadena azúcar-fosfato.
La molécula de DNA- B presenta dos surcos, uno mayor y uno menor. La diferencia entre ambos surcos esta dada por dos razones:
· El borde superior de cada par de bases es estructuralmente distinto al borde inferior.
· Los residuos de desoxirribosa son asimétricos.
Desviaciones del modelo Watson-Crick del DNA-B auténtico
A finales de los anos 70 el estudio de oligonucleótidos de estructuras bien definidas cristalizados y visualizados mediante rayos X permitió un estudio mas detallado de estas moléculas. El dodecámero autocomplementario CGCGAATTCGCG, oligonucleótido sometido a estudio, cristaliza en la conformación B.
Esta molécula presenta una elevación media por residuo de 3,4 A y 10.1 bp por vuelta (un giro helicoidal de 35,6 grados por bp) que es casi lo mismo que lo observado para el DNA-B ideal. No obstante, los residuos individuales se apartan de esta conformación media de una forma que parece ser dependiente de la secuencia.
Por ejemplo, en este dodecámero, el giro helicoidal por par de bases oscila entre 28 y 42°. Cada par de bases se desvía de su conformación ideal debido a deformaciones como el giro de helice (rotación de las bases apareadas en sentidos opuestos alrededor del eje mayor) y el balanceo del par de bases (inclinación del par de bases como un todo con respecto a su eje mayor).
Estudios recientes de otros oligómeros han mostrado que la estructura del DNA es sorprendentemente irregular y que depende de la secuencia. Este fenómeno es particularmente importante para la unión a secuencias específicas del DNA de determinadas proteínas relacionadas con el procesamiento de la información genética.
DNA-C
Existe otra estructura llamada DNA-C que se produce a partir del DNA-B en presencia de soluciones de sales concentradas y etilén glicol (sal de litio y 6 % de humedad relativa). Esta forma presenta un giro de la hélice por bp de 38.6 º por lo que exhibe 9.33 bp por vuelta. Presenta una elevación por bp de 3.32 A siendo el paso de rosca de aproximadamente 31 A. El diámetro de esta hélice es de aproximadamente 19 A.
DNA-A
Cuando la humedad relativa se reduce al 75 % el DNA-B sufre un cambio conformacional reversible hacia la llamada forma A. Estudios de fibras por rayos X han mostrado que la hélice del DNA-A, arrollada también hacia la derecha, es más ancha y más aplastada que la del DNA-B. El DNA-A posee 11 bp por vuelta y un paso de rosca de 28 A. Los pares de bases se encuentran inclinados 20° con respecto al eje de la hélice lo que provoca que el surco mayor sea profundo y el surco menor sea muy poco profundo. Al igual que el DNA-B estas moléculas muestran una variabilidad conformacional dependiente de cada secuencia. No se ha demostrado que exista el DNA-A in vivo sin embargo observaciones experimentales sugieren que ciertos segmentos de DNA asumen normalmente la conformación A. In vitro, se ha observado que las proteínas pequeñas de esporas solubles en acido (SASPs) de bacterias Gram-positivas inducen al DNA-B a adoptar la conformación A.
DNA-Z
Unos 25 años después del descubrimiento de la estructura del DNA por Watson y Crick, el análisis de la estructura cristalina de d(CGCGCG) reveló una doble hélice levógira. Esta estructura fue denominada DNA-Z, posee 12 bp por vuelta y un paso de rosca de 45 A, y a diferencia del DNA-A un surco menor muy profundo y un surco mayor casi imperceptible.
En el DNA-Z los pares de bases se encuentran desplazados 180° con respecto a los del DNA-B. Como consecuencia la unidad repetitiva en este caso es un dinucleótido d(XpYp) y no un nucleótido como en las otras hélices, donde X es un residuo de purina y Y es un residuo de pirimidina.
Esta alternancia de purinas y pirimidinas esta dada por la conformación que adoptan estas bases con respecto al azúcar en la estructura (purinas en posición sin y pirimidinas en posición trans. Esto provoca que el recorrido del esqueleto azúcar-fosfato sea zigzagueante, de ahí el nombre de DNA-Z.
Estudios por difracción de fibras han demostrado que los polinucleótidos complementarios con purinas y pirimidinas alternantes tales como poli d(GC), poli d(AT) y poli d(GT), adoptan la conformación de DNA-Z a elevadas concentraciones de sales. Una alta concentración de sales estabiliza el DNA-Z con respecto al DNA-B ya que minimiza las repulsiones electrostáticas de los grupos fosfatos de hebras opuestas, que están mucho más cercanos en la conformación Z que en la B (8 A en DNA-Z contra 12 A en DNA-B).
La metilación de la citosina en C(5), modificación biológica común, también promueve la formación de DNA-Z debido a que un grupo hidrofóbico en esta posición esta menos expuesto al solvente que en el DNA-B.
La existencia de DNA-Z in vivo ha sido difícil de probar, sobre todo porque no se puede demostrar que la utilización de una sonda para DNA-Z (un anticuerpo por ejemplo), no podría por sí misma inducir al DNA-B a adoptar la forma Z. Se ha propuesto que en circunstancias apropiadas la conversión reversible de secuencias específicas de DNA-B en Z pudiera actuar como interruptor regulando la expresión genética.
Propiedades
El ADN es un largo polímero formado por unidades repetitivas, los nucleótidos. Una doble cadena de ADN mide de 22 a 26 Ångströms (2,2 a 2,6 nanómetros) de ancho, y una unidad (un nucleótido) mide 3,3 Å (0,33 nm) de largo. Aunque cada unidad individual que se repite es muy pequeña, los polímeros de ADN pueden ser moléculas enormes que contienen millones de nucleótidos. Por ejemplo, el cromosoma humano más largo, el cromosoma número 1, tiene aproximadamente 220 millones de pares de bases.
En los organismos vivos, el ADN no suele existir como una molécula individual, sino como una pareja de moléculas estrechamente asociadas. Las dos cadenas de ADN se enroscan sobre sí mismas formando una especie de escalera de caracol, denominada doble hélice.
El modelo de estructura en doble hélice fue propuesto en 1953 por James Watson y Francis Crick (el artículo Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid fue publicado el 25 de abril de 1953 en Nature).El éxito de éste modelo radicaba en su consistencia con las propiedades físicas y químicas del ADN.
El estudio mostraba además que la complementariedad de bases podía ser relevante en su replicación, y también la importancia de la secuencia de bases como portador de información genética. Cada unidad que se repite, el nucleótido, contiene un segmento de la estructura de soporte (azúcar + fosfato), que mantiene la cadena unida, y una base, que interacciona con la otra cadena de ADN en la hélice.
En general, una base ligada a un azúcar se denomina nucleósido y una base ligada a un azúcar y a uno o más grupos fosfatos recibe el nombre de nucleótido. Cuando muchos nucleótidos se encuentran unidos, como ocurre en el ADN, el polímero resultante se denomina polinucleótido.
Componentes
Estructura de soporte: La estructura de soporte de una hebra de ADN está formada por unidades alternas de grupos fosfato y azúcar.
Ácido fosfórico: Su fórmula química es H3PO4. Cada nucleótido puede contener uno (monofosfato: AMP), dos (difosfato: ADP) o tres (trifosfato: ATP) grupos de ácido fosfórico.
Desoxirribosa: Es un monosacárido de 5 átomos de carbono (una pentosa) derivado de la ribosa, que forma parte de la estructura de nucleótidos del ADN. Su fórmula es C5H10O4. Una de las principales diferencias entre el ADN y el ARN es el azúcar, pues en el ARN la 2-desoxirribosa del ADN es reemplazada por una pentosa alternativa, la ribosa. Las moléculas de azúcar se unen entre sí a través de grupos fosfato, que forman enlaces fosfodiéster entre los átomos de carbono tercero (3′, «tres prima») y quinto (5′, «cinco prima») de dos anillos adyacentes de azúcar. La formación de enlaces asimétricos implica que cada hebra de ADN tiene una dirección. En una doble hélice, la dirección de los nucleótidos en una hebra (3′ → 5′) es opuesta a la dirección en la otra hebra (5′ → 3′). Esta organización de las hebras de ADN se denomina antiparalela; son cadenas paralelas, pero con direcciones opuestas. De la misma manera, los extremos asimétricos de las hebras de ADN se denominan extremo 5′ («cinco prima») y extremo 3′ («tres prima») respectivamente.
Bases nitrogenadas: Las cuatro bases nitrogenadas esenciales que se encuentran en el ADN son la adenina (abreviado A), citosina (C), guanina (G) y timina (T). Cada una de estas cuatro bases está unida al armazón de azúcar-fosfato a través del azúcar para formar el nucleótido completo (base-azúcar-fosfato). Las bases se clasifican en dos grupos: adenina y guanina son compuestos heterocíclicos de cinco y seis miembros unidos denominados purinas, mientras que citosina y timina son anillos de seis miembros denominados pirimidinas.[9] En los ácidos nucléicos existe una quinta base pirimidínica, denominada uracilo (U), que normalmente ocupa el lugar de la timina en el ARN y difiere de la timina porque le falta un grupo metilo en su anillo. El uracilo no se encuentra habitualmente en el ADN, sólo aparece raramente como un producto residual de la degradación de la citosina.
Timina: En el código genético se representa con la letra T. Forma el nucleósido timidina (dThd) y el nucleótido timidilato (dTMP). En el ADN, la timina siempre se empareja con la adenina de la cadena complementaria mediante 2 puentes de hidrógeno, T=A. La timina es una base orgánica nitrogenada de fórmula C5H6N2O2 y es un compuesto cíclico derivado de la pirimidina (es una base pirimidínica).
Adenina: En el código genético se representa con la letra A. En el ADN siempre se empareja con la timina de la cadena complementaria, A=T. Es un compuesto orgánico nitrogenado de fórmula C5H5N5. Es un derivado de la purina (es una base púrica) en la que un hidrógeno ha sido sustituido por un grupo amino (-NH2). La adenina, junto con la timina, fue descubierta en 1885 por el médico alemán Albrecht Kossel.
Guanina: En el código genético se representa con la letra G. La guanina siempre se empareja en el ADN con la citosina de la cadena complementaria mediante tres enlaces de hidrógeno, G≡C. Como la adenina, es una base púrica.
Citosina: En el código genético se representa con la letra C. Es un derivado pirimidínico, con un anillo aromático y un grupo amino en posición 4 y un grupo cetónico en posición 2. Su fórmula química es C4H5N3O y su masa molecular es de 111,10 unidades de masa atómica. La citosina fue descubierta en 1894 cuando fue aislada en tejido del timo de carnero. La citosina siempre se empareja en el ADN con la guanina de la cadena complementaria, C≡G. Se estima que el genoma humano haploide tiene alrededor de 3.000 millones de pares de bases. Para indicar el tamaño de las moléculas de ADN se indica el número de pares de bases, y como derivados hay dos unidades de medida muy utilizadas, la kilobase (kb) que equivale a 1.000 pares de bases, y la megabase (Mb) que equivale a un millón de pares de bases.
Apareamiento de bases
La dóble hélice de ADN se mantiene estable mediante la formación de puentes de hidrógeno entre las bases asociadas a cada una de las dos hebras. Los nucleótidos de cada una de las dos cadenas que forman el ADN establecen una asociación específica mediante puentes de hidrógeno con los correspondientes de la otra cadena.
Cada tipo de base en una hebra forma un enlace únicamente con un tipo de base en la otra hebra, lo que se denomina "complementariedad de las bases". Según esto, las purinas forman puentes de hidrógeno con las pirimidinas, de forma que A se enlaza sólo con T, y C sólo con G.
La organización de dos nucleótidos apareados a lo largo de la doble hélice se denomina apareamiento de bases. Este emparejamiento corresponde a la observación ya realizada por Erwin Chargaff (1905-2002), que mostró que la cantidad de adenina era muy similar a la cantidad de timina, y que la cantidad de citosina era igual a la cantidad de guanina en el ADN.
Esta observación permitió establecer la hipótesis de que una purina siempre mostraba afinidad con una pirimidina. La doble hélice se estabiliza además por el efecto hidrofóbico y el apilamiento que no están influenciados por la secuencia de bases del ADN. Como los puentes de hidrógeno no son enlaces covalentes, pueden romperse y formarse de nuevo de forma relativamente sencilla.
Por esta razón las dos hebras de la doble hélice pueden separarse como una cremallera, bien por fuerza mecánica o alta temperatura. Como resultado de esta complementariedad, toda la información contenida en la secuencia de doble hebra de la hélice de ADN está duplicada en cada hebra, lo cual es fundamental durante el proceso de replicación del ADN. En efecto, esta interacción reversible y específica entre pares de bases complementarias es crítica para todas las funciones del ADN en los organismos vivos.
Los dos tipos de pares de bases forman un número diferente de pares de hidrógeno: AT forman dos puentes de hidrógeno, y GC forman tres puentes de hidrógeno (ver imágenes a la izquierda). El par de bases GC es por tanto más fuerte que el par de bases AT. Como consecuencia, tanto el porcentaje de pares de bases GC como la longitud total de la doble hélice de ADN determinan la fuerza de la asociación entre las dos hebras de ADN.
Dobles hélices largas de ADN con alto contenido en GC tienen hebras que interaccionan más fuerte que dobles hélices cortas con alto contenido en AT. En biología, partes de la doble hélice de ADN que necesitan separarse fácilmente, como la TATAAT Pribnow box en algunos promotores, tienden a tener un alto contenido en AT, lo que permite que las hebras se separen más fácilmente.
En el laboratorio, la fuerza de esta interacción puede medirse, buscando la temperatura requerida para romper los puentes de hidrógeno, la temperatura de fusión (también denominado valor Tm, del inglés melting temperature). Cuando todas las pares de bases en una doble hélice se funden, las hebras se separan en solución en dos hebras completamente independientes. Estas moléculas de ADN de hebra simple no tienen una única forma común, sino que algunas conformaciones son más estables que otras.
Sense y antisense
Una secuencia de ADN se denomina sense (en español, sentido) si su secuencia es la misma que la secuecia de un ARN mensajero que se traduce en una proteína. La secuencia de la hebra de ADN complementaria se denomina antisense (antisentido). En diferentes zonas de una hebra de ADN pueden existir tanto secuencias sense como antisense (es decir, ambas hebras contienen secuencias sense y antisense). Tanto en procariotas como en eucariotas se producen ARNs con secuencias antisense, pero la función de esos ARNs no está completamente clara. Se ha propuesto que los ARNs antisense están implicados en la regulación de la expresión génica mediante apareamiento ARN-ARN.
En unas pocas secuencias de ADN en procariotas y eucariotas (este hecho es más frecuente en plásmidos y virus), la distinción entre hebras sense y antisense es más difusa, debido a que tienen genes superpuestos. En estos casos, algunas secuencias de ADN tienen una función doble, codificando una proteína cuando se lee a lo largo de una hebra, y una segunda proteína cuando se lee en la dirección contraria a lo largo de la otra hebra. En bacterias, esta superposición puede estar involucrada en la regulación de la transcripción del gen, mientras que en virus, los genes superpuestos aumentan la cantidad de información que puede codificarse en el diminuto genoma viral.
Hendiduras mayor y menor
La doble hélice es una espiral que gira a mano derecha. Cuando las dos hebras de ADN se enrollan una alrededor de la otra, dejan huecos entre cada juego de la estructura de soporte, dejando expuestos los laterales de las bases internas. Hay dos tipos de hendiduras alrededor de la superficie de la doble hélice: una de ellas, la hendidura mayor, tiene 22 Å de ancho, y la otra, la hendidura menor, tiene 12 Å de ancho.
La estrechez de la hendidura menor implica que los extremos de las bases son más accesibles en la hendidura mayor. Como consecuencia, proteínas como los factores de transcripción que pueden unirse a secuencias específicas en el ADN de doble hebra, frecuentemente contactan con los laterales de las bases expuestos en la hendidura mayor.
Superenrollamiento (supercoiling))
El ADN puede retorcerse como una cuerda en un proceso que se denomina superenrollamiento del ADN. Cuando el ADN está en un estado "relajado", una hebra normalmente gira alrededor del eje de la doble hélice una vez cada 10.4 pares de bases, pero si el ADN está retorcido las hebras pueden estar unidas bien más estrechamente o más relajadamente.
Si el ADN está retorcido en la dirección de la hélice, éste es un superenrollamiento positivo, y las bases se mantienen juntas de forma más estrecha. Si el ADN se retuerce en la dirección opuesta, éste es un superenrollamiento negativo, y las bases se alejan. En la Naturaleza, la mayor parte del ADN tiene un ligero superenrollamiento negativo que es producido por enzimas denominadas topoisomerasas. Estas enzimas también son necesarias para liberar las fuerzas de torsión introducidas en las hebras de ADN durante procesos como la transcripción y la replicación.
Estructuras en cuádruplex
En los extremos de los cromosomas lineales existen regiones especializadas de ADN denominadas telómeros. La función principal de estas regiones es permitir a la célula replicar los extremos cromosómicos utilizando la enzima telomerasa, puesto que las enzimas que replican el resto del ADN no pueden copiar los extremos 3' de los cromosomas.
Estas terminaciones cromosómicas especializadas también protegen los extremos del ADN, y previenen que los sistemas de reparación del ADN en la célula los procesen como ADN dañado que debe ser corregido. En las células humanas, los telómeros son largas zonas de ADN de hebra sencilla que contienen algunos miles de repeticiones de una única secuencia TTAGGG.
Estas secuencias ricas en guanina pueden estabilizar los extremos cromosómicos mediante la formación de estructuras de juegos apilados de unidades de cuatro bases, en lugar de los pares de bases encontrados normalmente en otras estructuras de ADN. En este caso, cuatro bases guanina forman unidades con superficie plana que se apilan una sobre otra, para formar una estructura cuádruplex-G estable.
Estas estructuras se estabilizan formando puentes de hidrógeno entre los extremos de las bases y la quelatación de un metal iónico en el centro de cada unidad de cuatro bases. También se pueden formar otras estructuras, con el juego central de cuatro bases procedente de bien una hebra sencilla plegada alrededor de las bases, o bien de varias hebras paralelas diferentes, de forma que cada una contribuye una base a la estructura central.
Además de estas estructuras apiladas, los telómeros también forman largas estructuras en lazo, denominadas lazos teloméricos o lazos-T (T-loops en inglés). En este caso, las hebras simples de ADN se enroscan sobre sí mismas en un amplio círculo estabilizado por proteínas que se unen a telómeros.
En el extremo del lazo-T, el ADN telomérico de hebra sencilla se sujeta a una región de ADN de doble hebra porque la hebra de ADN telomérico altera la doble hélice y se aparea a una de las dos hebras. Esta estructura de triple hebra se denomina lazo de desplazamiento o lazo-D (D-loop).
· Está constituido por dos hebras polinucleotídicas que se enrollan alrededor de un eje común formando una hélice de aproximadamente 20 A de diámetro que gira hacia la derecha. Las cadenas se extienden en direcciones opuestas y se encuentran enrolladas de manera que no pueden separarse sin que sea desenrollada la hélice (enrollamiento plectonémico). Las bases se encuentran hacia el interior de la hélice mientras que las cadenas de azúcar-fosfato se encuentran hacia el exterior con el fin de minimizar las repulsiones entre grupos fosfatos cargados.
· Los planos de las bases son perpendiculares al eje de la hélice. Cada base está unida a la de la hebra opuesta por enlaces de hidrógeno (apareamiento de bases complementarias)
· La hélice del DNA-B ideal posee un 10 pares de bases (bp) por vuelta, o sea, un giro helicoidal de 36 grados por bp. Las bases aromáticas tienen espesores de van der Waals de 3.4 A y estan parcialmente apiladas una sobre otra (apilamiento de bases), por lo que la hélice presenta un paso de rosca (elevación por vuelta) de 34 A.
La estructura de Watson-Crick solo admite dos conformaciones posibles para el apareamiento de bases, la adenina (A) con la timina (T) y viceversa y la guanina (G) con la citosina (C) y viceversa, estos son conocidos como pares de bases Watson-Crick. Estos pares de bases son intercambiables entre si dentro de la helice sin cambiar los atomos del carbono 1 del esqueleto azúcar-fosfato. Igual la hélice permanece inalterada cuando se intercambian los integrantes de un par de bases Watson-Crick. Por el contrario, cualquier otra combinación de bases distorsionaría la doble hélice ya que la formación de un par de bases distinto a los de Watson-Crick requeriría un reordenamiento importante de la cadena azúcar-fosfato.
La molécula de DNA- B presenta dos surcos, uno mayor y uno menor. La diferencia entre ambos surcos esta dada por dos razones:
· El borde superior de cada par de bases es estructuralmente distinto al borde inferior.
· Los residuos de desoxirribosa son asimétricos.
Desviaciones del modelo Watson-Crick del DNA-B auténtico
A finales de los anos 70 el estudio de oligonucleótidos de estructuras bien definidas cristalizados y visualizados mediante rayos X permitió un estudio mas detallado de estas moléculas. El dodecámero autocomplementario CGCGAATTCGCG, oligonucleótido sometido a estudio, cristaliza en la conformación B.
Esta molécula presenta una elevación media por residuo de 3,4 A y 10.1 bp por vuelta (un giro helicoidal de 35,6 grados por bp) que es casi lo mismo que lo observado para el DNA-B ideal. No obstante, los residuos individuales se apartan de esta conformación media de una forma que parece ser dependiente de la secuencia.
Por ejemplo, en este dodecámero, el giro helicoidal por par de bases oscila entre 28 y 42°. Cada par de bases se desvía de su conformación ideal debido a deformaciones como el giro de helice (rotación de las bases apareadas en sentidos opuestos alrededor del eje mayor) y el balanceo del par de bases (inclinación del par de bases como un todo con respecto a su eje mayor).
Estudios recientes de otros oligómeros han mostrado que la estructura del DNA es sorprendentemente irregular y que depende de la secuencia. Este fenómeno es particularmente importante para la unión a secuencias específicas del DNA de determinadas proteínas relacionadas con el procesamiento de la información genética.
DNA-C
Existe otra estructura llamada DNA-C que se produce a partir del DNA-B en presencia de soluciones de sales concentradas y etilén glicol (sal de litio y 6 % de humedad relativa). Esta forma presenta un giro de la hélice por bp de 38.6 º por lo que exhibe 9.33 bp por vuelta. Presenta una elevación por bp de 3.32 A siendo el paso de rosca de aproximadamente 31 A. El diámetro de esta hélice es de aproximadamente 19 A.
DNA-A
Cuando la humedad relativa se reduce al 75 % el DNA-B sufre un cambio conformacional reversible hacia la llamada forma A. Estudios de fibras por rayos X han mostrado que la hélice del DNA-A, arrollada también hacia la derecha, es más ancha y más aplastada que la del DNA-B. El DNA-A posee 11 bp por vuelta y un paso de rosca de 28 A. Los pares de bases se encuentran inclinados 20° con respecto al eje de la hélice lo que provoca que el surco mayor sea profundo y el surco menor sea muy poco profundo. Al igual que el DNA-B estas moléculas muestran una variabilidad conformacional dependiente de cada secuencia. No se ha demostrado que exista el DNA-A in vivo sin embargo observaciones experimentales sugieren que ciertos segmentos de DNA asumen normalmente la conformación A. In vitro, se ha observado que las proteínas pequeñas de esporas solubles en acido (SASPs) de bacterias Gram-positivas inducen al DNA-B a adoptar la conformación A.
DNA-Z
Unos 25 años después del descubrimiento de la estructura del DNA por Watson y Crick, el análisis de la estructura cristalina de d(CGCGCG) reveló una doble hélice levógira. Esta estructura fue denominada DNA-Z, posee 12 bp por vuelta y un paso de rosca de 45 A, y a diferencia del DNA-A un surco menor muy profundo y un surco mayor casi imperceptible.
En el DNA-Z los pares de bases se encuentran desplazados 180° con respecto a los del DNA-B. Como consecuencia la unidad repetitiva en este caso es un dinucleótido d(XpYp) y no un nucleótido como en las otras hélices, donde X es un residuo de purina y Y es un residuo de pirimidina.
Esta alternancia de purinas y pirimidinas esta dada por la conformación que adoptan estas bases con respecto al azúcar en la estructura (purinas en posición sin y pirimidinas en posición trans. Esto provoca que el recorrido del esqueleto azúcar-fosfato sea zigzagueante, de ahí el nombre de DNA-Z.
Estudios por difracción de fibras han demostrado que los polinucleótidos complementarios con purinas y pirimidinas alternantes tales como poli d(GC), poli d(AT) y poli d(GT), adoptan la conformación de DNA-Z a elevadas concentraciones de sales. Una alta concentración de sales estabiliza el DNA-Z con respecto al DNA-B ya que minimiza las repulsiones electrostáticas de los grupos fosfatos de hebras opuestas, que están mucho más cercanos en la conformación Z que en la B (8 A en DNA-Z contra 12 A en DNA-B).
La metilación de la citosina en C(5), modificación biológica común, también promueve la formación de DNA-Z debido a que un grupo hidrofóbico en esta posición esta menos expuesto al solvente que en el DNA-B.
La existencia de DNA-Z in vivo ha sido difícil de probar, sobre todo porque no se puede demostrar que la utilización de una sonda para DNA-Z (un anticuerpo por ejemplo), no podría por sí misma inducir al DNA-B a adoptar la forma Z. Se ha propuesto que en circunstancias apropiadas la conversión reversible de secuencias específicas de DNA-B en Z pudiera actuar como interruptor regulando la expresión genética.
Propiedades
El ADN es un largo polímero formado por unidades repetitivas, los nucleótidos. Una doble cadena de ADN mide de 22 a 26 Ångströms (2,2 a 2,6 nanómetros) de ancho, y una unidad (un nucleótido) mide 3,3 Å (0,33 nm) de largo. Aunque cada unidad individual que se repite es muy pequeña, los polímeros de ADN pueden ser moléculas enormes que contienen millones de nucleótidos. Por ejemplo, el cromosoma humano más largo, el cromosoma número 1, tiene aproximadamente 220 millones de pares de bases.
En los organismos vivos, el ADN no suele existir como una molécula individual, sino como una pareja de moléculas estrechamente asociadas. Las dos cadenas de ADN se enroscan sobre sí mismas formando una especie de escalera de caracol, denominada doble hélice.
El modelo de estructura en doble hélice fue propuesto en 1953 por James Watson y Francis Crick (el artículo Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid fue publicado el 25 de abril de 1953 en Nature).El éxito de éste modelo radicaba en su consistencia con las propiedades físicas y químicas del ADN.
El estudio mostraba además que la complementariedad de bases podía ser relevante en su replicación, y también la importancia de la secuencia de bases como portador de información genética. Cada unidad que se repite, el nucleótido, contiene un segmento de la estructura de soporte (azúcar + fosfato), que mantiene la cadena unida, y una base, que interacciona con la otra cadena de ADN en la hélice.
En general, una base ligada a un azúcar se denomina nucleósido y una base ligada a un azúcar y a uno o más grupos fosfatos recibe el nombre de nucleótido. Cuando muchos nucleótidos se encuentran unidos, como ocurre en el ADN, el polímero resultante se denomina polinucleótido.
Componentes
Estructura de soporte: La estructura de soporte de una hebra de ADN está formada por unidades alternas de grupos fosfato y azúcar.
Ácido fosfórico: Su fórmula química es H3PO4. Cada nucleótido puede contener uno (monofosfato: AMP), dos (difosfato: ADP) o tres (trifosfato: ATP) grupos de ácido fosfórico.
Desoxirribosa: Es un monosacárido de 5 átomos de carbono (una pentosa) derivado de la ribosa, que forma parte de la estructura de nucleótidos del ADN. Su fórmula es C5H10O4. Una de las principales diferencias entre el ADN y el ARN es el azúcar, pues en el ARN la 2-desoxirribosa del ADN es reemplazada por una pentosa alternativa, la ribosa. Las moléculas de azúcar se unen entre sí a través de grupos fosfato, que forman enlaces fosfodiéster entre los átomos de carbono tercero (3′, «tres prima») y quinto (5′, «cinco prima») de dos anillos adyacentes de azúcar. La formación de enlaces asimétricos implica que cada hebra de ADN tiene una dirección. En una doble hélice, la dirección de los nucleótidos en una hebra (3′ → 5′) es opuesta a la dirección en la otra hebra (5′ → 3′). Esta organización de las hebras de ADN se denomina antiparalela; son cadenas paralelas, pero con direcciones opuestas. De la misma manera, los extremos asimétricos de las hebras de ADN se denominan extremo 5′ («cinco prima») y extremo 3′ («tres prima») respectivamente.
Bases nitrogenadas: Las cuatro bases nitrogenadas esenciales que se encuentran en el ADN son la adenina (abreviado A), citosina (C), guanina (G) y timina (T). Cada una de estas cuatro bases está unida al armazón de azúcar-fosfato a través del azúcar para formar el nucleótido completo (base-azúcar-fosfato). Las bases se clasifican en dos grupos: adenina y guanina son compuestos heterocíclicos de cinco y seis miembros unidos denominados purinas, mientras que citosina y timina son anillos de seis miembros denominados pirimidinas.[9] En los ácidos nucléicos existe una quinta base pirimidínica, denominada uracilo (U), que normalmente ocupa el lugar de la timina en el ARN y difiere de la timina porque le falta un grupo metilo en su anillo. El uracilo no se encuentra habitualmente en el ADN, sólo aparece raramente como un producto residual de la degradación de la citosina.
Timina: En el código genético se representa con la letra T. Forma el nucleósido timidina (dThd) y el nucleótido timidilato (dTMP). En el ADN, la timina siempre se empareja con la adenina de la cadena complementaria mediante 2 puentes de hidrógeno, T=A. La timina es una base orgánica nitrogenada de fórmula C5H6N2O2 y es un compuesto cíclico derivado de la pirimidina (es una base pirimidínica).
Adenina: En el código genético se representa con la letra A. En el ADN siempre se empareja con la timina de la cadena complementaria, A=T. Es un compuesto orgánico nitrogenado de fórmula C5H5N5. Es un derivado de la purina (es una base púrica) en la que un hidrógeno ha sido sustituido por un grupo amino (-NH2). La adenina, junto con la timina, fue descubierta en 1885 por el médico alemán Albrecht Kossel.
Guanina: En el código genético se representa con la letra G. La guanina siempre se empareja en el ADN con la citosina de la cadena complementaria mediante tres enlaces de hidrógeno, G≡C. Como la adenina, es una base púrica.
Citosina: En el código genético se representa con la letra C. Es un derivado pirimidínico, con un anillo aromático y un grupo amino en posición 4 y un grupo cetónico en posición 2. Su fórmula química es C4H5N3O y su masa molecular es de 111,10 unidades de masa atómica. La citosina fue descubierta en 1894 cuando fue aislada en tejido del timo de carnero. La citosina siempre se empareja en el ADN con la guanina de la cadena complementaria, C≡G. Se estima que el genoma humano haploide tiene alrededor de 3.000 millones de pares de bases. Para indicar el tamaño de las moléculas de ADN se indica el número de pares de bases, y como derivados hay dos unidades de medida muy utilizadas, la kilobase (kb) que equivale a 1.000 pares de bases, y la megabase (Mb) que equivale a un millón de pares de bases.
Apareamiento de bases
La dóble hélice de ADN se mantiene estable mediante la formación de puentes de hidrógeno entre las bases asociadas a cada una de las dos hebras. Los nucleótidos de cada una de las dos cadenas que forman el ADN establecen una asociación específica mediante puentes de hidrógeno con los correspondientes de la otra cadena.
Cada tipo de base en una hebra forma un enlace únicamente con un tipo de base en la otra hebra, lo que se denomina "complementariedad de las bases". Según esto, las purinas forman puentes de hidrógeno con las pirimidinas, de forma que A se enlaza sólo con T, y C sólo con G.
La organización de dos nucleótidos apareados a lo largo de la doble hélice se denomina apareamiento de bases. Este emparejamiento corresponde a la observación ya realizada por Erwin Chargaff (1905-2002), que mostró que la cantidad de adenina era muy similar a la cantidad de timina, y que la cantidad de citosina era igual a la cantidad de guanina en el ADN.
Esta observación permitió establecer la hipótesis de que una purina siempre mostraba afinidad con una pirimidina. La doble hélice se estabiliza además por el efecto hidrofóbico y el apilamiento que no están influenciados por la secuencia de bases del ADN. Como los puentes de hidrógeno no son enlaces covalentes, pueden romperse y formarse de nuevo de forma relativamente sencilla.
Por esta razón las dos hebras de la doble hélice pueden separarse como una cremallera, bien por fuerza mecánica o alta temperatura. Como resultado de esta complementariedad, toda la información contenida en la secuencia de doble hebra de la hélice de ADN está duplicada en cada hebra, lo cual es fundamental durante el proceso de replicación del ADN. En efecto, esta interacción reversible y específica entre pares de bases complementarias es crítica para todas las funciones del ADN en los organismos vivos.
Los dos tipos de pares de bases forman un número diferente de pares de hidrógeno: AT forman dos puentes de hidrógeno, y GC forman tres puentes de hidrógeno (ver imágenes a la izquierda). El par de bases GC es por tanto más fuerte que el par de bases AT. Como consecuencia, tanto el porcentaje de pares de bases GC como la longitud total de la doble hélice de ADN determinan la fuerza de la asociación entre las dos hebras de ADN.
Dobles hélices largas de ADN con alto contenido en GC tienen hebras que interaccionan más fuerte que dobles hélices cortas con alto contenido en AT. En biología, partes de la doble hélice de ADN que necesitan separarse fácilmente, como la TATAAT Pribnow box en algunos promotores, tienden a tener un alto contenido en AT, lo que permite que las hebras se separen más fácilmente.
En el laboratorio, la fuerza de esta interacción puede medirse, buscando la temperatura requerida para romper los puentes de hidrógeno, la temperatura de fusión (también denominado valor Tm, del inglés melting temperature). Cuando todas las pares de bases en una doble hélice se funden, las hebras se separan en solución en dos hebras completamente independientes. Estas moléculas de ADN de hebra simple no tienen una única forma común, sino que algunas conformaciones son más estables que otras.
Sense y antisense
Una secuencia de ADN se denomina sense (en español, sentido) si su secuencia es la misma que la secuecia de un ARN mensajero que se traduce en una proteína. La secuencia de la hebra de ADN complementaria se denomina antisense (antisentido). En diferentes zonas de una hebra de ADN pueden existir tanto secuencias sense como antisense (es decir, ambas hebras contienen secuencias sense y antisense). Tanto en procariotas como en eucariotas se producen ARNs con secuencias antisense, pero la función de esos ARNs no está completamente clara. Se ha propuesto que los ARNs antisense están implicados en la regulación de la expresión génica mediante apareamiento ARN-ARN.
En unas pocas secuencias de ADN en procariotas y eucariotas (este hecho es más frecuente en plásmidos y virus), la distinción entre hebras sense y antisense es más difusa, debido a que tienen genes superpuestos. En estos casos, algunas secuencias de ADN tienen una función doble, codificando una proteína cuando se lee a lo largo de una hebra, y una segunda proteína cuando se lee en la dirección contraria a lo largo de la otra hebra. En bacterias, esta superposición puede estar involucrada en la regulación de la transcripción del gen, mientras que en virus, los genes superpuestos aumentan la cantidad de información que puede codificarse en el diminuto genoma viral.
Hendiduras mayor y menor
La doble hélice es una espiral que gira a mano derecha. Cuando las dos hebras de ADN se enrollan una alrededor de la otra, dejan huecos entre cada juego de la estructura de soporte, dejando expuestos los laterales de las bases internas. Hay dos tipos de hendiduras alrededor de la superficie de la doble hélice: una de ellas, la hendidura mayor, tiene 22 Å de ancho, y la otra, la hendidura menor, tiene 12 Å de ancho.
La estrechez de la hendidura menor implica que los extremos de las bases son más accesibles en la hendidura mayor. Como consecuencia, proteínas como los factores de transcripción que pueden unirse a secuencias específicas en el ADN de doble hebra, frecuentemente contactan con los laterales de las bases expuestos en la hendidura mayor.
Superenrollamiento (supercoiling))
El ADN puede retorcerse como una cuerda en un proceso que se denomina superenrollamiento del ADN. Cuando el ADN está en un estado "relajado", una hebra normalmente gira alrededor del eje de la doble hélice una vez cada 10.4 pares de bases, pero si el ADN está retorcido las hebras pueden estar unidas bien más estrechamente o más relajadamente.
Si el ADN está retorcido en la dirección de la hélice, éste es un superenrollamiento positivo, y las bases se mantienen juntas de forma más estrecha. Si el ADN se retuerce en la dirección opuesta, éste es un superenrollamiento negativo, y las bases se alejan. En la Naturaleza, la mayor parte del ADN tiene un ligero superenrollamiento negativo que es producido por enzimas denominadas topoisomerasas. Estas enzimas también son necesarias para liberar las fuerzas de torsión introducidas en las hebras de ADN durante procesos como la transcripción y la replicación.
Estructuras en cuádruplex
En los extremos de los cromosomas lineales existen regiones especializadas de ADN denominadas telómeros. La función principal de estas regiones es permitir a la célula replicar los extremos cromosómicos utilizando la enzima telomerasa, puesto que las enzimas que replican el resto del ADN no pueden copiar los extremos 3' de los cromosomas.
Estas terminaciones cromosómicas especializadas también protegen los extremos del ADN, y previenen que los sistemas de reparación del ADN en la célula los procesen como ADN dañado que debe ser corregido. En las células humanas, los telómeros son largas zonas de ADN de hebra sencilla que contienen algunos miles de repeticiones de una única secuencia TTAGGG.
Estas secuencias ricas en guanina pueden estabilizar los extremos cromosómicos mediante la formación de estructuras de juegos apilados de unidades de cuatro bases, en lugar de los pares de bases encontrados normalmente en otras estructuras de ADN. En este caso, cuatro bases guanina forman unidades con superficie plana que se apilan una sobre otra, para formar una estructura cuádruplex-G estable.
Estas estructuras se estabilizan formando puentes de hidrógeno entre los extremos de las bases y la quelatación de un metal iónico en el centro de cada unidad de cuatro bases. También se pueden formar otras estructuras, con el juego central de cuatro bases procedente de bien una hebra sencilla plegada alrededor de las bases, o bien de varias hebras paralelas diferentes, de forma que cada una contribuye una base a la estructura central.
Además de estas estructuras apiladas, los telómeros también forman largas estructuras en lazo, denominadas lazos teloméricos o lazos-T (T-loops en inglés). En este caso, las hebras simples de ADN se enroscan sobre sí mismas en un amplio círculo estabilizado por proteínas que se unen a telómeros.
En el extremo del lazo-T, el ADN telomérico de hebra sencilla se sujeta a una región de ADN de doble hebra porque la hebra de ADN telomérico altera la doble hélice y se aparea a una de las dos hebras. Esta estructura de triple hebra se denomina lazo de desplazamiento o lazo-D (D-loop).
No hay comentarios:
Publicar un comentario